

Stepper motor Driver / Kann-K17e motor driver PCB Second Generation

KannMOTION series

Product description

- Stepper motor driver for bipolar motors
- Integrated magnetic position encoder
- Motor drive up to 36V/2.8A ¹⁾
- · Capable for different motor and control voltages

Interfaces

- 4 digital inputs / with adjustable thresholds
- 2 digital output / configurable logic (PNP /NPN)
- 1 analog input (0..10V)
- 1x RS485

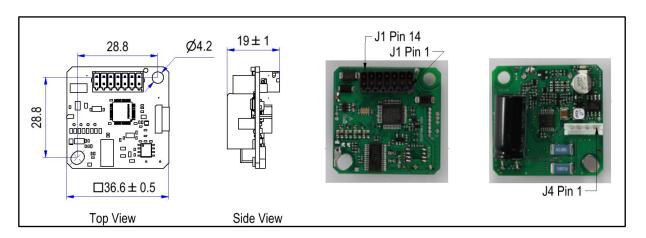
Benefits / Software

- Closed operation
- · Build in PLC functions
- Variety of software functions
- Fully controllable over a terminal. Protocol is open and free to use
- Flexible configuration and programming via free KannMOTION Manager
- Updates, documents, tutorials and videos at www.KannMOTION.com

Technical data (Maximum ratings)

Rated supply voltage (Motor)	12 to 36 VDC
Rated supply voltage (Logic)	6 to 30 VDC
Max. motor phase current 1)	2.8 A
Ambient temperature range	-10 to +40°C
Connection terminals	14 pole / wire max. 0.5 mm ² / 6A per pin
Position control accuracy	+/-1° ²⁾
Motor control mode	Micro stepping

Ordering information


Part number Description		Accessories	
100 701 . xxx	Kann-K17e motor driver PCB, 6-DIO, 1xAin		
200 933 . xxx	J1 / 14 pole female 0.5mm² max 6A	х	

¹⁾ Might be limited in time, restricted by losses! <Chip temperature>, take care about PCB cooling depending on application

²⁾ Depending on mechanical positioning of the magnet

Dimensions (in mm)

Connection terminals J1

Pin	Description	Nominal	Absolute max	Comment	
1	GND	-	-	Reference	
2	Vmot	12 / 24 / 36 VDC	40V	Supply motor drive	
3	RS485-n	2.5	±6V	RS485 negative Line	
4	Ain	010V	30V	Analog input	
5	NC	0		Not connected	
6	RS485-p	2.5	±6V	RS485 positive Line	
7	Out2 3)	GNDVin Imax: 10mA	Vin	- Short-circuit-proof - Capacitive load max. 100nF	
8	Out1 3)		VIII	- Overload detection @ 15mA	
9	DIn4 ⁴⁾		30V		
10	DIn3 ⁴⁾	0.00//50//400//040/	30V		
11	DIn2 4)	3.3V/ 5V / 12V / 24V	30V	 Thresholds defined in firmware 	
12	DIn1 ⁴⁾		30V	_	
13	GND	-	-	Reference	
14	Vin	12 / 24 VDC	30V	Supply of PCB logic, also PCB output	

^{3):} See section software configuration of outputs

^{4):} See section software configuration of inputs

Connection terminals J4

Pin	Description	Comment
1	A-	Motor phase A+
2	A+	Motor phase A-
3	B+	Motor phase B+
4	B-	Motor phase B-

Software Configuration of Input Thresholds

Setting V _{iH} (High level input voltage)		V _{iL} (Low level input voltage)	
SPS_24V	>15.0	<5.0	
SPS_12V	>7.5	<2.5	
TTL_5V	>2.7	<1.5	
TTL_3V3	>2.0	<1.0	

Software Configuration of Outputs

Setting V _{OH} (High level output voltage)		VoL (Low level output voltage)	
Push (PNP) Vin – 0.5V @ 10mA		HiZ ⁵⁾	
Pull (NPN) HiZ ⁵⁾		GND + 0.5V @ 10mA	
Push Pull Vin – 0.5V @ 10mA		GND + 0.5V @ 10mA	

^{5):} HiZ means high impedance, level is depending on load connected, level not maintained by KannMOTION

100 727 000 Kann-K17e motor driver PCB.docx V1.0 / 9.12.2019 tvo/mzi © adlos AG 2019 Page 3/5

Tools, further documents

Adlos offers for its customers some helping and design-in tools.

Communication Description (100570)

Serial protocol description document, 100570.

KannMotion Manager tool (190081), manage your drives

KannMOTION Manager is the general tool for our generation 2 (GEN2) drives. This tool comes with an integrated C-coder and a visual drag and drop user interface for customizing your drive.

https://kannmotion.adlos.com/download/kannmotionmanager/application/SetupKannMOTIONManager.zip

ComWatch Communication Tool (190077), for Life values

ComWatch is a tool for engineers and technicians to explore device specific parameters, read out tracking data and settings and doing firmware updates.

The software is as it is, and in principle for free for adlos customers. The software is not made for a broad range of standard users, it's made in principle for technical engineers which are used in working with windows-based software. A minimum technical know-how is needed.

https://kannmotion.adlos.com/download/comwatchtool/ComWatchSetup.zip

KannMOTION API

Adlos offers a windows API (Library) to communicate with our drives. The API enables much shorter implementation of KannMOTION communication with your own Windows based toolset and application.

Part number	Short / level	Description	
190073	LEVEL1 API-LLL	Low Level Abstraction	
		offers RD/WR functions to Com, organizes Checksum and	
		protocol Itself	
190074	LEVEL2 API-HAL	Hardware abstraction	
		offers data object modeling, means it will take care bout	
		device specific XML-files	
190080	LEVEL3 API-BAL	Bus abstraction	
		Offers bus data support like CAN	

100 727 000 Kann-K17e motor driver PCB.docx V1.0 / 9.12.2019 tvo/mzi © adlos AG 2019 Page 4/5

SKAE

The motion platform KannMOTION

Proper use

Do not connect or disconnect motor during operation!

Motor cable and motor inductivity might lead to voltage spikes when the motor is disconnected / connected while energized. These voltage spikes might exceed voltage limits of the driver MOSFETs and might permanently damage them. Therefore, always disconnect power supply before connecting / disconnecting the motor

Keep the power supply voltage below the upper limit!

Otherwise the driver electronics will seriously be damaged! Especially, when the selected operating voltage is near the upper limit a regulated power supply is highly recommended.

Check your mechanical system, is it able to drive the motor, avoid motor being used as generator

Every motor could be operated as an voltage generator, so take care about generated voltage, this might damage your electronics by overvoltage. Add some voltage limiter units to keep supply voltage in range.

Contact information

Adlos AG Föhrenweg 14 FL-9496 Balzers

Thomas.Vogt@adlos.com Tel: +423 263 63 63

Countries: CH, A, LI, SK, IT

www.adlos.com

KOCO MOTION GmbH Niedereschacher Straße 54 D-78083 Dauchingen

Olaf Kämmerling O.Kaemmerling@kocomotion.de Tel: +49 7720/995858-0

Countries: DE, BE, NL, LU www.kocomotion.de